کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
Authors
Abstract:
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس سری زمانی سیگنال های اقلیمی شامل فشار، گرادیان فشار، دما، گرادیان افقی دما، گرادیان قائم دما بین سطح دریا و سطح 1000 میلی بار، تابش طول موج بلند خروجی از سطح زمین، آب قابل بارش، مولفه مداری باد، مولفه نصف النهاری باد، دمای هوا در سطح 700 میلی بار، ضخامت بین سطوح 500 و 1000 میلی بار و رطوبت نسبی در سطح 300 میلی بار در بازه های زمانی مختلف محاسبه شد. در ادامه ارتباط بین پیش بینی کننده های اقلیمی با بارش متوسط منطقه با استفاده از ضریب همبستگی پیرسون به دست آورده شد. پس از شناسایی سیگنال های موثر بر بارش منطقه، مدل شبکه های عصبی مصنوعی در دوره 1997-1970 آموزش داده شد و در پایان، پیش بینی بارش در دوره 2007-1998 انجام شد. نتایج نشان داد شبکه های عصبی مصنوعی قادر است بارش را با دقت قابل قبولی پیش بینی نماید. ضریب همبستگی بین بارش مشاهده شده و پیشبینی شده در مرحله تست مدل، 66/0 به دست آمد. ریشه میانگین مربعات خطا نیز 9/6 میلی متر به دست آمد.
similar resources
کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص های کلان علم و فناوری
ارزیابی تحقیق و توسعه و ارتباط بین تولید علم و تکنولوژی در سطح کلان کشورها به دلیل حجم بالای اطلاعات و تغییر و تحولات سریع در این حوزه محدود بوده است. این پژوهش با هدف درک ارتباط و عملکرد توسعه فناوری در رابطه با فعالیتهای تولید علم در سطح کشورها صورت پذیرفته است که از نوع تحقیقات توصیفی-کاربردی میباشد. هدف ساخت مدلی با استفاده از الگوریتم های پیشرفته است که توانایی پیشبینی شاخص فناوری را ...
full textکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
full textکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
full textارزیابی دقت شبکه عصبی مصنوعی بازگشتی نارکس در پیش بینی بارش روزانه در استان کرمان
بارش یکی از پارامترهای مهم اقلیمشناسی و سایر علوم جوّی که از اهمیّ تّ والای یّ در حیات بشر برخوردار است. در سالهای اخیر، سیل و خشکسالی خسار های فراوانی را در بس یّاری از مناطق جهان در پی داشته است. پیش بینی بارش در مدیریت و هشدار این معضلا نق شّ مهمی بر عهده دارد. امروزه شبکههای عصبی مصنوعی از جمله روشهای نوین م یّباش دّ ک هّ برای تخمین و پیشبینی پارامترها با استفاده از ارتباط ذاتی بین دادهه اّ توس عّه یا...
full textپیش بینی بارش ماهانه در منطقه ایران با استفاده از ترکیب شبکه های عصبی مصنوعی و فیلتر کالمن توسعه یافته
بارش باران یکی از مهمترین پدیدههای جوّی است که بر زندگی بشر اثر میگذارد. پیشبینی بارش باران برای اهداف مختلفی مانند برنامهریزی فعالیتهای کشاورزی، پیش<st...
full textMy Resources
Journal title
volume 9 issue 31
pages 98- 110
publication date 2016-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023